翻訳と辞書
Words near each other
・ Hecphora
・ Hecphora latefasciata
・ Hecphora testator
・ Hecq
・ HECSU
・ Hect
・ HECT domain
・ Hectad
・ Hectanooga, Nova Scotia
・ Hectaphelia
・ Hectaphelia hectaea
・ Hectaphelia kapakoana
・ Hecke algebra
・ Hecke algebra of a locally compact group
・ Hecke algebra of a pair
Hecke character
・ Hecke L-function
・ Hecke operator
・ Heckel
・ Heckel-clarina
・ Heckelberg-Brunow
・ Heckelmanns Building
・ Heckelphone
・ Heckelphone-clarinet
・ Hecken
・ Hecken, Haut-Rhin
・ Heckenbach
・ Heckenberg, New South Wales
・ Heckengäu
・ Heckenmünster


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hecke character : ウィキペディア英語版
Hecke character
In number theory, a Hecke character is a generalisation of a Dirichlet character, introduced by Erich Hecke to construct a class of
''L''-functions larger than Dirichlet ''L''-functions, and a natural setting for the Dedekind zeta-functions and certain others which have functional equations analogous to that of the Riemann zeta-function.
A name sometimes used for ''Hecke character'' is the German term Größencharakter (often written Grössencharakter, Grossencharacter, etc.).
==Definition using ideles==
A Hecke character is a character of the idele class group of a number field or global function field. It corresponds uniquely to a character of the idele group which is trivial on principal ideles, via composition with the projection map.
This definition depends on the definition of a character, which varies slightly between authors: It may be defined as a homomorphism to the non-zero complex numbers (also called a "quasicharacter"), or as a homomorphism to the unit circle in C ("unitary"). Any quasicharacter (of the idele class group) can be written uniquely as a unitary character times a real power of the norm, so there is no big difference between the two definitions.
The conductor of a Hecke character χ is the largest ideal ''m'' such that χ is a Hecke character mod ''m''. Here we say that χ is a Hecke character mod ''m'' if χ (considered as a character on the idele group) is trivial on the group of finite ideles whose every v-adic component lies in 1 + ''m''Ov.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hecke character」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.